TITLE: On the origins of data: The critical role of sampling assumptions in generalisation, categorisation, inductive reasoning and the evaluation of expert opinion.
WHEN: Thursday 28th May 2015, 12-1pm
WHERE: Keats Reading Room (AVLG17), Callaghan Campus.
ABSTRACT: The study of human inductive inferences typically presents people with problems of the following form: "Objects A, B and C are known to possess property P. How likely is it that object D also possesses property P?" In much of the theoretical literature, such problems are characterised as "inference from givens" (A, B and C), with little if any consideration given to the process by which such facts came to light. Yet in many real world situations the manner in which facts are put together is just as informative as the facts themselves: what we believe about D depends not just on the truth of facts A, B and C, but on how such facts were selected, and perhaps even upon what social agenda we think underpins this selection. That is, the sampling method for facts matters.
In
this talk I discuss experiments examining the effect that sampling
assumptions have upon inferences. The core of this talk discusses
category based induction problems, and presents experiments showing how
people reason differently when facts are presented as a helpful hint
versus when they are perceived to be randomly generated truths, and show
that people's inferences closely match the predictions of standard
Bayesian models. Time permitting, I will talk about how specific agendas
shape people's inferences about non-randomly selected facts, how
sampling assumptions affect basic categorization tasks, and how
cognitive models can capture these effects.